淺析高頻雷達液位計水位測量數據跳變的問題與解決方法
發布時間:2021-01-05 點擊次數:340次
數據跳變的原因分析
高頻雷達液位計的工作原理可簡單概括為如下:雷達液位計發射雷達波;水面反射雷達波;雷達液位計接收雷達波。在以上三個過程中,雷達液位計本身的技術指標決定了發射與接收過程的信號質量,而水面反射雷達波的過程對信號強度產生至關重要的影響,在此過程中各種干擾因素會使反射波信號強度降低,使得雷達液位計接收到的反射波太弱或接收不到反射波,導致水位測量失敗。
解決數據跳變的?三步走
(1)加大發射功率,增強信號反射。既然反射波的強弱決定水位測量的成敗,且不同的干擾物造成的影響不同,為更好地分析各類干擾的影響,我們模擬了平穩的水環境、大波浪水面、有漂浮物水面、戈壁干灘等各種不同情況,采用30M量程發射功率的雷達液位計在10M 高度進行測試,以保證信號反射的量程一致。多次實驗結果表明:平穩的水環境基本能夠正常反射信號,而大波浪水面出現數據波動,有漂浮堆積物的水面、戈壁干灘則出現數據跳變。我們將發射功率加大到70M 量程,則基本不出現數據跳變的問題;經過反復驗證,適當加大發射功率可有效降低數據跳變概率。

(2)改用常供電,保證工作狀態穩定。野外監測設備通常采用太陽能供電模式,為了能夠更好地保證系統用電,RTU會對其進行供電控制:一般數據采集頻次設置為不小于6 分鐘,在采集數據發射的間隔期,RTU將停止對其進行供電,且RTU自身也會進入休眠狀態以降低功耗,在下一個數據采集周期RTU 自動蘇醒,并給其供電。在液位計經幾十秒的加電預熱后,RTU 對其發送數據采集指令,獲取到回傳的數據后進行發送。
高頻雷達液位計供電預熱的時長受外界氣溫的變化影響較大,一般高溫度(25℃以上)時在28 秒左右,低溫(-10℃以下)時會增長到45 秒左右,且RTU為雷達液位計加電的瞬間會產生較大的啟動工作電流,不但增加功耗,還將縮短雷達液位計的使用壽命。目前使用的RTU 和雷達液位計均采用低功耗元器件制造,因此適當增加太陽能板和蓄電池的容量,可保證RTU和液位計長時間工作,為增強其穩定性,第二步實驗采用常供電的模式:即RTU給液位計持續加電,保證其一直處于穩定的工作狀態。通過多次實驗對比,低溫時常供電工作方式對液位計數據測量效果突出,數據跳變的幾率降低60%以上,數據可用率得到了較大提高。
(3)多次均值測量,過濾跳變數據。為了能夠更好地處理特例的數據跳變,第三步,我們對高頻雷達液位計CPU內固化的軟件程序進行優化,以此更大程度地避免跳變數據的出現。CPU 內固化的軟件程序原有數據處理模式為:發射脈沖波后并接收到反射波即迅速處理一組數據,作為測量數據回送給RTU,因此易將跳變數據作為正常數據來處理。通過常供電工作模式的調整,液位計一直處于穩定工作狀態,
CPU內的程序可控制雷達液位計按照特定的周期發射脈沖波后進行接收處理,獲得采集數據。實驗中按照每0.5 秒鐘發射一組雷達波,進行一次數據處理,并將數據進行存儲,連續采集18 組數據,去掉4 組*大值和4 組*小值后,取平均值作為可用數據測量值返回給RTU,通過RTU 發送數據。